Exponential input-to-state stability of recurrent neural networks with multiple time-varying delays

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Exponential Stability of Linear Systems with Multiple Time Delays

In this paper, a class of linear systems with multiple time delays is studied. The problem of exponential stability of time-delay systems has been investigated by using Lyapunov functional method. We will convert the system of multiple time delays into a single time delay system and show that if the old system is stable then the new one is so. Then we investigate the stability of converted new ...

متن کامل

Discrete-Time Recurrent Neural Networks with Time-Varying Delays: Exponential Stability Analysis

This paper is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more general than the recently commonly used Lip...

متن کامل

robust stability of stochastic fuzzy impulsive recurrent neural networks with time-varying delays

in this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the takagi-sugeno (t-s) fuzzy models is considered. a novel linear matrix inequality (lmi)-based stability criterion is obtained by using lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Global Exponential Stability of a General Class of Recurrent Neural Networks With Time-Varying Delays

This brief presents new theoretical results on the global exponential stability of neural networks with time-varying delays and Lipschitz continuous activation functions. These results include several sufficient conditions for the global exponential stability of general neural networks with time-varying delays and without monotone, bounded, or continuously differentiable activation function. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cognitive Neurodynamics

سال: 2013

ISSN: 1871-4080,1871-4099

DOI: 10.1007/s11571-013-9258-9